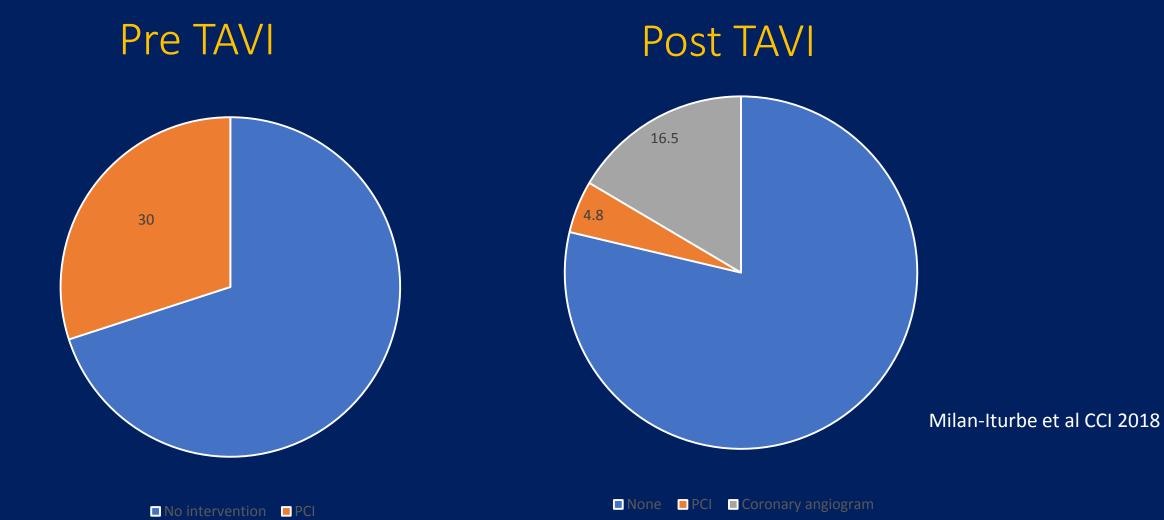
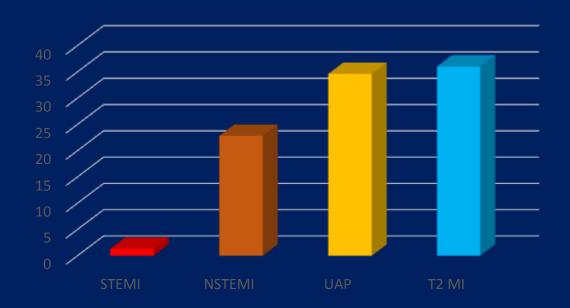

Coronary access post TAVI

Dr Edgar Tay MBBS FACC
Director of Structural Heart Disease Programme
National University Heart Centre Singapore



Coronary disease co-exists with AS

- Up to 60% of SAVR patients and 65% of TAVI patients have co-existing CAD
- CAD is progressive
- The indications of TAVI is moving towards lower risk patients who may be younger increasing the probability of needing coronary intervention


Kvidal et al. JACC 2000 Hamm et al. EHJ 2013 D'Ascenzo et al Int J Cardiol 2013 Milan-Iturbe et al CCI 2018

Coronary angiogram and PCI

Indications for coronary angiogram after TAVI

- Majority were progression of CAD (stable angina), ACS (13.3%)
- Another study on ACS post TAVR 10% (follow up of 25 months)
- 67% had coronary angiogram while 56.6% underwent PCI
- In-hospital death 3.8%

Blumenstein et al. Clin Res Cardiol. 2015 Rodes Cabau et al. JACC 2018

Potential difficulties post TAVI

Factors impacting coronary intervention

Anatomical

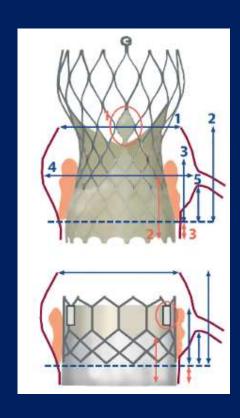
STJ dimensions

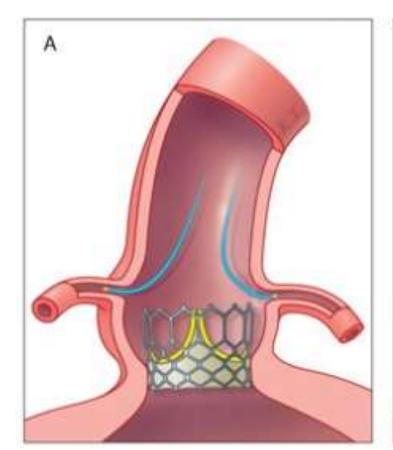
Sinus Height

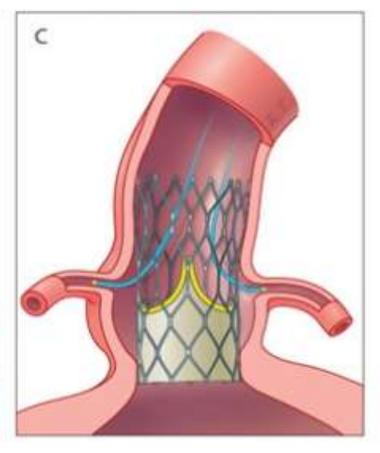
Leaflet length and bulkiness

Sinus of Valsalva width

Coronary height


Device and procedural


Commisural tab orientation

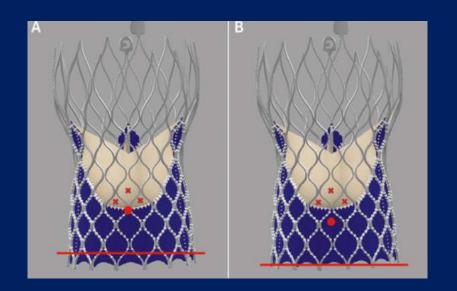

Sealing skirt Height

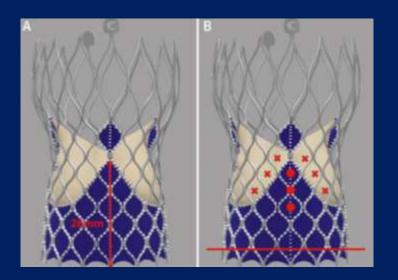
Valve implantation depth

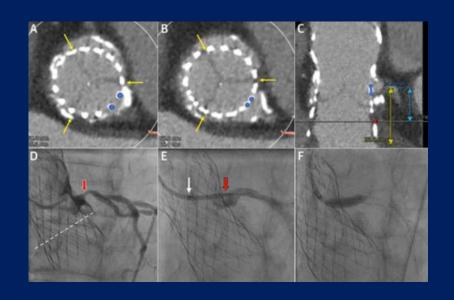
Valve type

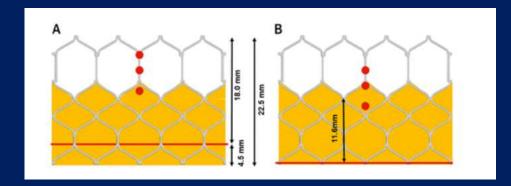
Low-frame Intra-annular leaflets

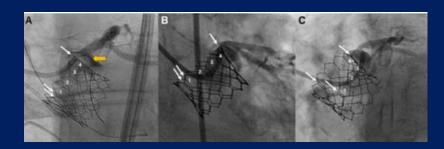
High-frame Intra-annular leaflets

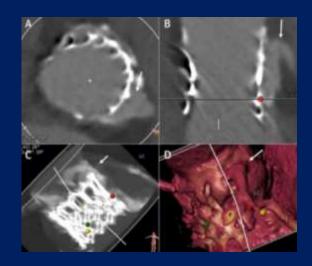

High-frame supra-annular leaflets

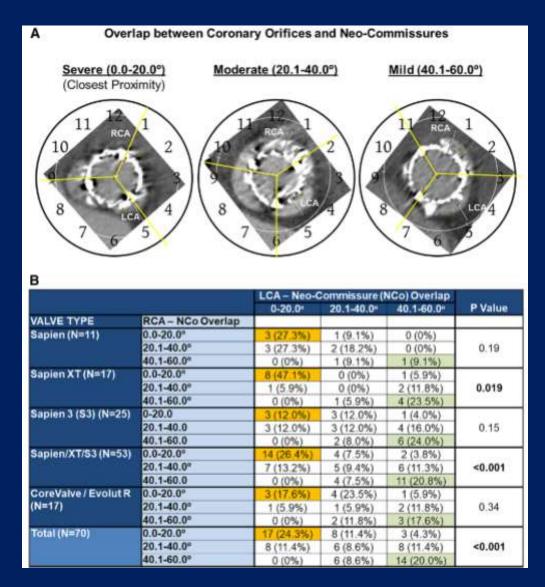

Valve types?


- Case series of 1000, 35 patients required coronary angiogram
- Subcoronary valves— all successful
- 3/15 unsuccessful for valves that cover the coronary ostium


Name	Prosthesis	Correct position	Characteristics	Tipps for CA or PCI		
Subcoronary aortic valve prostheses						
JenaValve			Self expandable nitinol stent Three nitinol feelers Self orientating TA and TF approach Total height: 30-32mm	Standard Catheters		
SAPIEN XT		1 Miles	- Balloon expandable - TF and TA approach - Total height: 14-19mm	Standard Catheters		
	Partially supracoronary aortic valve prostheses					
CoreValve	M		Self expandable nitinol stent TF approach only Total height: 53-55mm	LCA: - Smaller catheter size (JL 3.5) RCA: - Amplatz right 1.0		
Portico	W		Self expandable nitinol stent TF and TA approach Total height: 47mm	LCA: - Smaller catheter size (JL 3.5) RCA: - Amplatz right 1.0		
Acurate			Self expandable nitinol stent Three stabilization arches TA and TF approach Total height: 44-46mm	LCA: - Amplatz left 2.0 RCA: - Amplatz right 1.0		

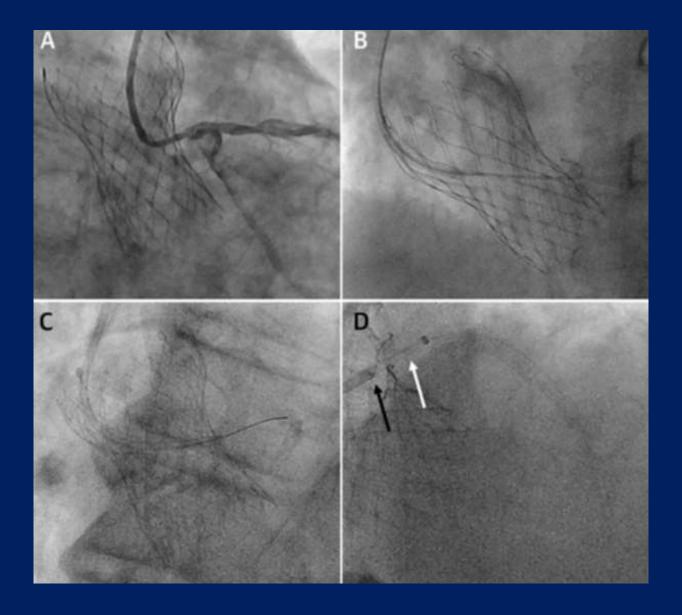

Blumenstein et al. Clin Res Cardiol. 2015



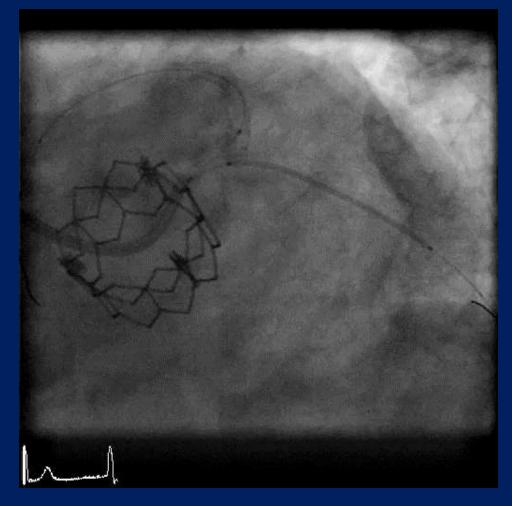


Impact of neo-commissure on coronary

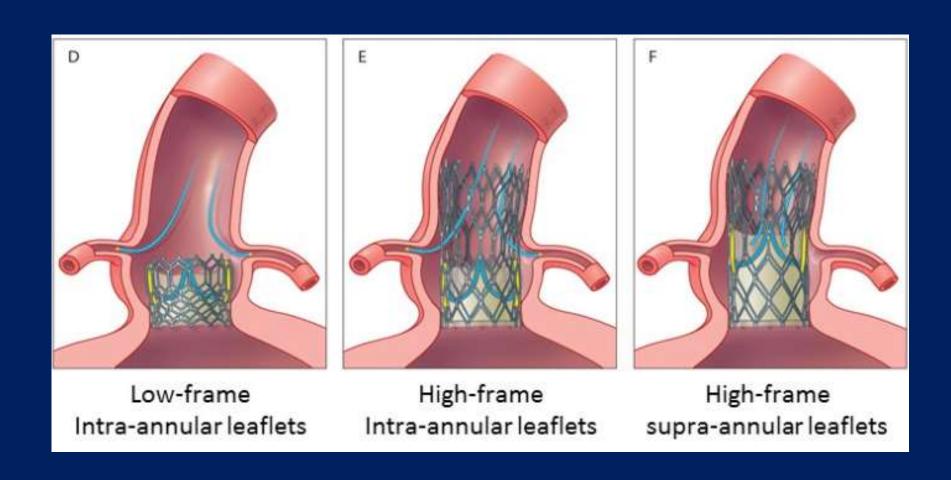
access

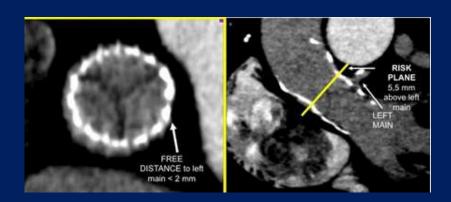

Tang et al. Circ Cardiovasc Interv 2018

Coronary re-access studies

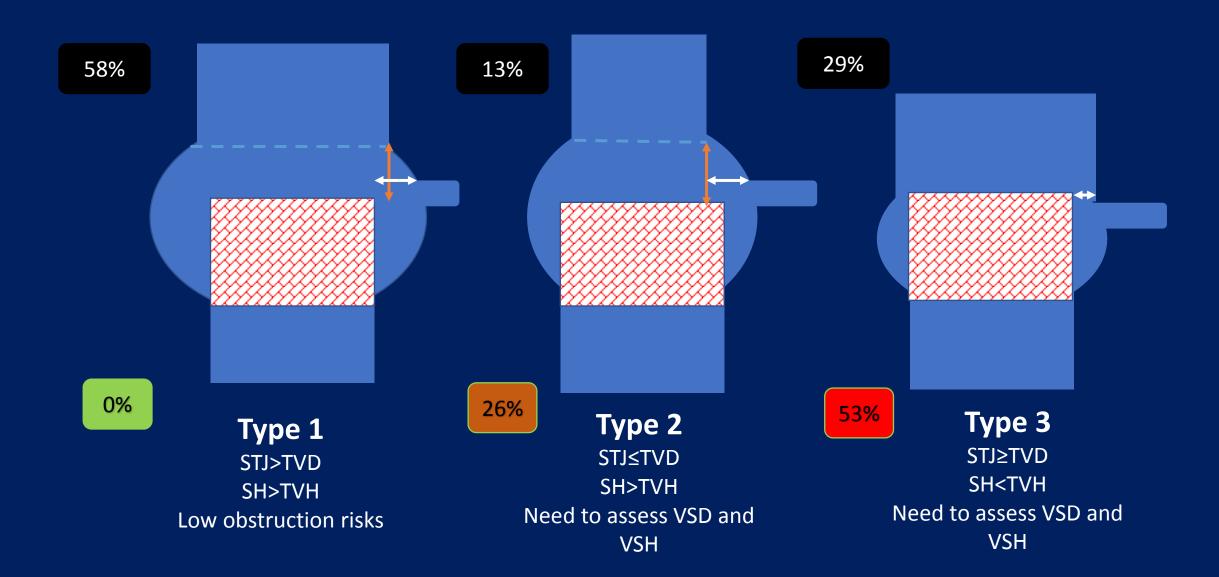

Study	n	Coronary angiography	PCI
Zivelonghi et al	66 (25 CVE, 41 S3)	4% needed coronary wire. 1 failed	Possible in all
Blumenstein et al	35 (19 Sapien and Sapien X), 1 Jena, CV 10, Accurate 4, Portico 1	All successful in subcoronary valves. Selective intubation failed in 9 out of 15 (valves above coronaries) full accessibility in 3 2 cases RCA could only be imaged with aortogram	
Boukantar et al	16 self expanding	9 successful for both only 2 had selective engagement of right	7 attempted, successful in 6
Allali et al	17 self expanding		Procedural success in 95.8%, 1 case of STEMI unsucessful
Chetcuti	169 patients (Corevalve)	190 coros (2.1% can't access)	113 PCIs, 91.2% successful PCI

Techniques


- Femoral or left radial access
- Use J wire to enter the diamond in front or adjacent to the coronary ostium (Alternatively a stiff angled glidewire can be used to guide the catheter)
- For left coronary artery: JL 3.5
- Use coronary wire to help if difficult
- For right: Use JR4 (second line lkari right 1.5 or MP)
- For PCI consider balloon support/guide extension catheters



Valve in Valve



Valve in valve

- Post CT analysis of VIV
- Defined risk plane and Estimated Free Distance
- 1/3 of patients were deemed high risk of impaired coronary access
- Predictors include STJ, supra-annular design, height of implant

TAV in TAV

CATH

(Coronary Artery Access after Trancatheter Heart Valve) Registry

Investigators

Singapore

Dr Edgar Tay

Dr Ho KW

Hong Kong

Dr Michael Lee

Taiwan

Dr Paul Kao

Dr Yin WH

Japan

Dr Yohei Ohno

EMAIL: edgar tay@nuhs.edu.sg

Background

- There is an increased utilization of TAVI to treat younger patients many of whom are in the lower surgical risk groups
- Expected survival after these procedures are longer
- Concomitant coronary artery disease with AS is well known and reaccess to the coronary arteries would need to be considered
- There are several reports of difficulties in reaccess to coronaries after TAVI
- This study attempts to assess possible baseline risk factors which predict difficult coronary access in patients following TAVI

TAVR patients requiring coronary access

Determination of CT and implantation characteristics

Indication for CA/PCI (stable/ACS)

CA
Vessel involved
Catheter used
Adjuncts
Success/Failure

PCI
Vessel involved
Catheter used
Adjuncts
Success/Failure

Clinical outcomes at 1 year

Death

MI

Heart Failure

Rehospitalization

Definitions of coronary artery access

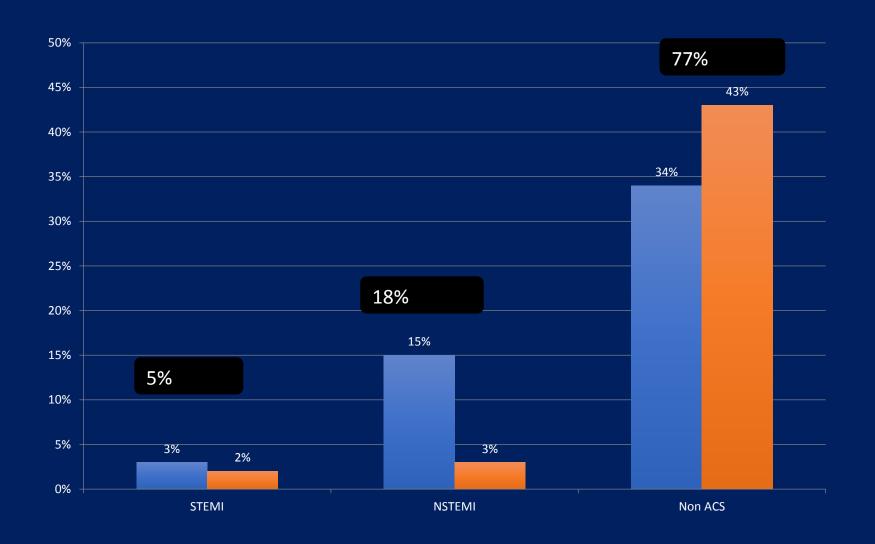
- Coronary angiogram difficulty:
 - Grade 1 Normal
 - Grade 2 Partial catheter engagement (able to opacify vessel without streaming)

EASY

- Grade 3 Partial catheter engagement (unable to opacify fully with streaming) or subselective
- Grade 4 Completely unsuccessful (or need for pigtail)

Difficult PCI

- Grade 1 Normal engagement
- Grade 2 Multiple guide exchanges with subsequent engagement
- Grade 3 Subselective engagement
- Grade 4 Unsuccessful

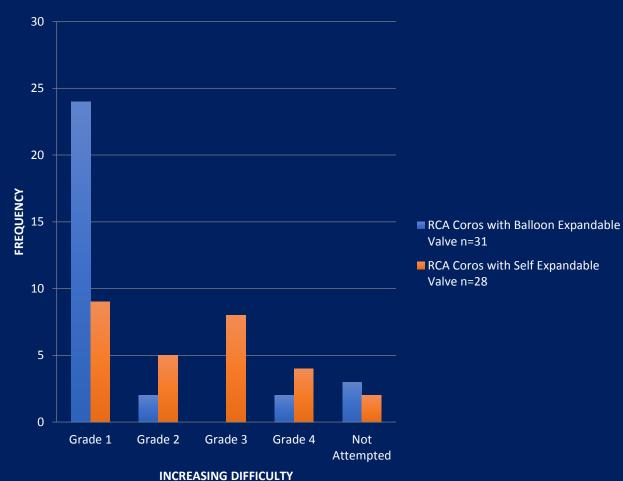

Delivery of devices

- Grade 1 Easy
- Grade 2- Use of adjuncts eg guideliners
- Grade 3 Unable to deliver device

Demographics

	Total = 59	Easy n = 31 (53%)	Hard n = 28 (47%)	P value
Age	74.78 ± 9.29	74.84 ± 8.85	73.93 ± 10.62	p = 0.992
Male	27 (46%)	16 (51%)	11 (39%)	P = 0.343
Female	32 (54%)	15 (49%)	17 (61%)	P = 0.343
CKD eGFR< 60	41 (69%)	23 (39%)	18 (31%)	P = 0.992
Diabetes	30 (51%)	17 (29%)	13 (22%)	P = 0.992
Hypertension	51 (86%)	28 (47%)	23 (39%)	P = 0.992
Hyperlipidemia	46 (78%)	26 (44%)	20 (34%)	P = 0.992
CAD	48 (81%)	25 (42%)	23 (39%)	P = 0.992
Previous PCI	35 (59%)	20 (34%)	15 (25%)	P = 0.510
Previous CABG	15 (25%)	11 (19%)	4 (7%)	P = 0.510
CVA	5 (8%)	4 (7%)	1 (2%)	P = 0.510
PAD	15 (25%)	8 (14%)	7 (12%)	P = 0.510
Logistic Euroscore II	17.69 ± 15.09	14.8 ± 11.69	20.89 ± 17.8	P = 0.061
STS score	6.39 ± 5.05	5.3 ± 4.43	7.46 ± 5.49	P = 0.04

Indications for coronary angio/PCI

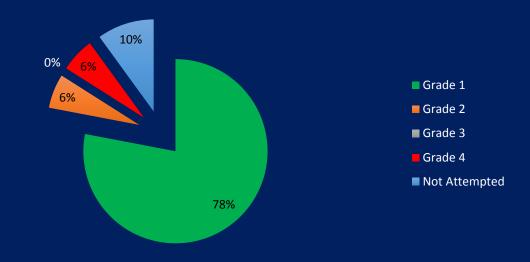


■ Balloon Expandable

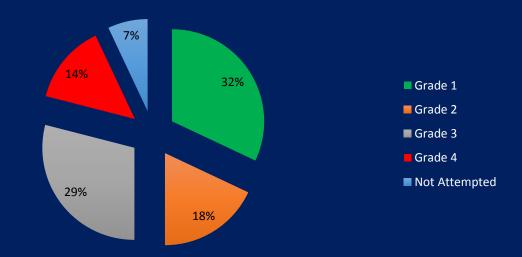
■ Self Expandable

	Total = 59	Easy (Grade 1)	Hard (all others)	P Value
BSA	1.57 ± 0.19	1.58 ± 0.16	1.55 ± 0.22	P = 0.242
ВМІ	24.05 ± 4.28	24.31 ± 3.96	23.76 ± 4.67	P = 0.312
Annulus area	395.51 ± 72.99	389.85 ± 75.85	401.16 ± 71.74	P = 0.324
Annulus perimeter	72.27 ± 6.69	71.63 ± 7.43	72.75 ± 6.19	P = 0.298
Horizontal aorta	2 (3%)	0 (0%)	2 (3%)	P = 0.990
Bicuspid aortic valve	3 (5%)	1 (2%)	2 (3%)	P = 0.990
Coronary height to LM	12.92 ± 2.88	13.1 ± 3.09	12.76 ± 2.73	P = 0.351
Coronary height to RCA	15.67 ± 2.95	15.44 ± 3.05	15.87 ± 2.9	P = 0.319
Valve agatston score	1839 ± 1525.42	1552.66 ± 1066.05	2151.37 ± 1913.99	P = 0.179
Sinus width RCC	29.2 ± 3.27	28.57 ± 2.64	29.75 ± 3.7	P = 0.128
Sinus width LCC	30.49 ± 3.74	29.87 ± 3.15	31.03 ± 4.17	P = 0.164
Sinotubular junction	25.82 ± 3.51	24.98 ± 3.56	26.88 ± 3.38	P = 0.134
Valve type self expandable	29 (49%)	8 (14%)	21 (36%)	P = 0.0003
Optimal position	56 (95%)	31 (53%)	25 (42%)	P = 0.0003

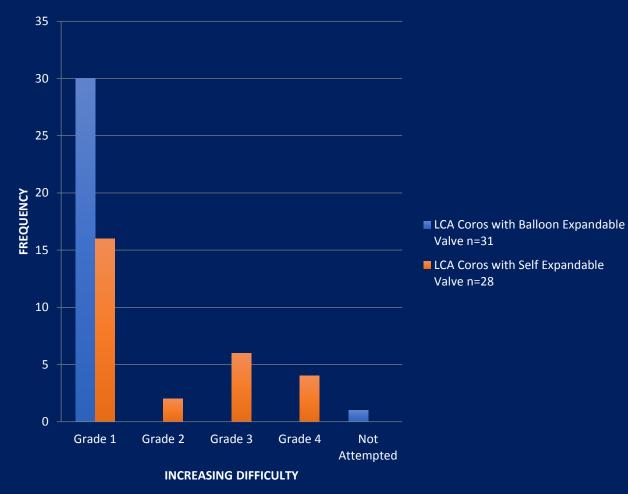
RIGHT CORONARY ANGIOGRAM

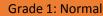


Grade 1: Normal


Grade 2: Partial engagement but fully opacified

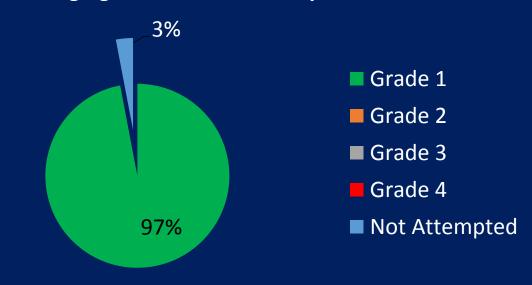
Grade 3: Cannot fully opacify vessel Grade 4: Unsuccessful engagement

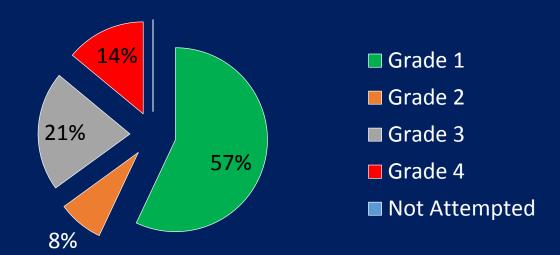

RCA Angiogram with Balloon Expandable Valve



RCA Angiogram with Self Expandable Valve

LEFT CORONARY ARTERY ANGIOGRAM




Grade 2: Partial engagement but fully opacified

Grade 3: Cannot fully opacify vessel Grade 4: Unsuccessful engagement

LCA Angiogram with Balloon Expandable Valve

LCA Angiogram with Self Expandable Valve

Conclusion

- Difficulty with coronary access post TAVI is common
- There are potential risk factors that should be further explored
- The implication of longer term outcomes related to poor coronary access should be investigated
- Pre-TAVI consideration of coronary access is important especially in younger patients and those with significant CAD

CATH

(Coronary Artery Access after Trancatheter Heart Valve) Registry

Investigators

Singapore

Dr Edgar Tay

Dr Ho KW

Hong Kong

Dr Michael Lee

Taiwan

Dr Paul Kao

Dr Yin WH

Japan

Dr Yohei Ohno

EMAIL: edgar tay@nuhs.edu.sg